Maker Literacy & Digital Humanities

Sarah Nagle Creation & Innovation Services Librarian IMS 203 March 30th, 202<mark>2</mark>

What you'll learn tonight

- All about makerspaces and maker literacy
- Common maker technology
- How maker literacy can be helpful in digital humanities
- Examples of maker/digital humanities projects
- Intro 3D modeling

Memorable Making

Experience

Think about a memorable making experience you had in the past.

Maker Movement

----* * * * * * * * * * * * . <mark>.</mark>

Makerspaces

What is a makerspace?

A place where people gather together to make things and collaboratively learn about making things together.

Maker Movement Timeline

- 2001 MIT FabLab created
- 2005 Dale Dougherty launches Make Magazine and the next year holds the first Maker Faire
- 2005 RepRap 3D printers first low-cost, self-replicating 3D printer
- 2011 Fayetteville Free Library (NY) opens makerspace
- 2013 present More and more universities start opening makerspaces

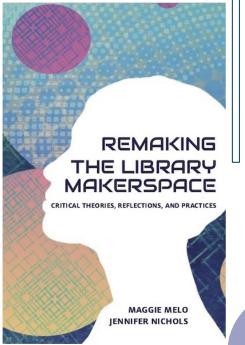
What's the Big Deal?

People have always been makers...so what's so different about the maker movement?

Maker Movement's Inclusion Problems

Leah Buechley

2014 talk - Analysis of Make Magazine covers and articles. Over 35 covers, 80% male and NO POC!


Adam Stark Masters

 Analysis of Make's website; demographic data from World Maker Faires.

Inclusivity in the Maker Movement - Future Directions

- Nation of Makers Culture and Inclusion
- Dr. Maggie Melo's Research
 - Remaking the Library Makerspace
- New publications and work continuing

Melo, M., & Nichols, J. (2020). *Re-making the Library Makerspace*. Library Juice Press. Retrieved March 30, 2021, from <u>https://litwinbooks.com/books/re-making-the-library-makerspace/</u>

Makerspaces in Education

- Public -> K12 -> Higher Ed
- Experiential Learning
- Miami Plan

Agency by Design (K-12)

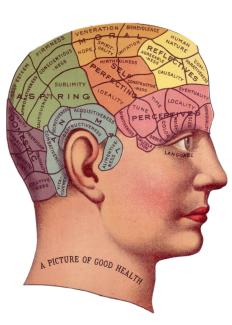
Agency by Design. (n.d.) *The Framework for Maker-Centered Learning.* http://www.agencybydesign.org/explore-the-framework

Learning Frameworks

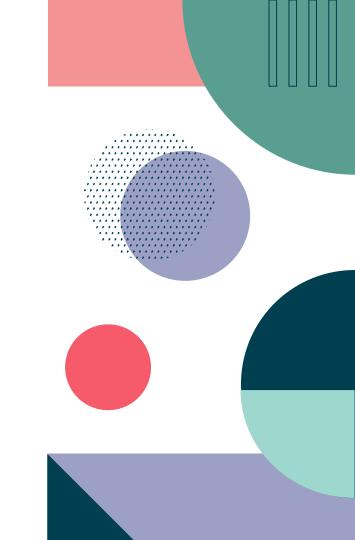
Maker Literacies Project (Higher Ed)

Table 2: Maker Competencies

Maker


	Makers Will
Ideate	 Identify the need to invent, design, fabricate, build, repurpose, repair, or create a new derivative of some "thing" in order to express an idea or
	emotion, to solve a problem, and/or teach a concept.
	Analyze the idea, question, and/or problem.
	Explore the idea, question, and/or problem and potential solutions.
Create	Operate safely.
	Assess the availability and appropriateness of tools and materials.
	Produce prototypes.
	Utilize iterative design principles.
Manage	 Develop a project plan.
	Assemble effective teams.
	Collaborate effectively with team members and stakeholders.
	Employ effective knowledge management practices.
Share	12. Apply knowledge gained into other disciplines, workforce, and community
	13. Be mindful of the spectrum of cultural, economic, environmental, and
	social issues surrounding making.
	14. Understand many of the legal issues surrounding making.
	15. Pursue entrepreneurial opportunities.

Boardman, B. S., & Wallace, M. K., & Chivers, M. (2019, July 28). A Makerspace Project for New Transfer Students. Paper presented at the 2019 First Year Engineering Experience Conference, Pennsylvania, PA. Retrieved from https://peer.asee.org/33697


Maker Mindset

What is a maker mindset?

- Consumer \rightarrow Creator
- Design sensitivity
- Failure-positive outlook
- Empowered to change the world!

The Makerspace

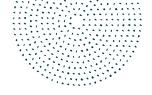
A hands-on, highly collaborative, and experiential learning space located on the third floor of King Library.

Equipment:

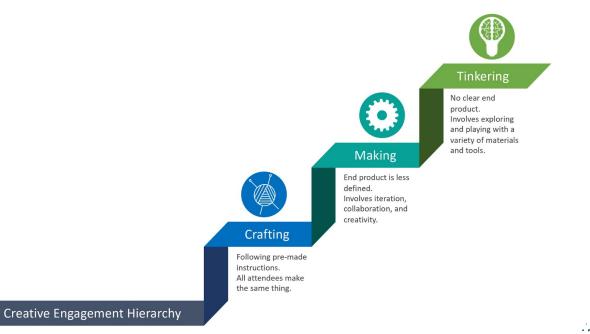
- Lulzbot Mini 2 3D Printers
- Carvey CNC Machines
- Brother Sewing/Embroidery Machines
- Heat Press
- Silhouette Cameo 4 Craft Cutters
- Sawgrass Sublimation Printer
- Glowforge Plus Laser Cutter

The Makerspace

- Currently by appointment only (bit.ly/makerspace-book)
- It is FREE! *while supplies last
- No previous maker experience required
- Carvey machine & Glowforge must do training w/ staff but we guide you through it
- Self-directed work encouraged, but staff assistance is always available.
- Academic projects are #1 goal, but personal projects are welcome too


Questions? <u>create@miamioh.edu</u> or email me!

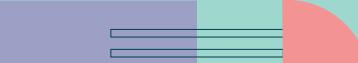
Makerspaces & Digital Humanities

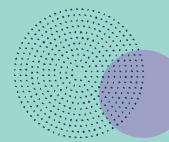

Benefits of Maker Learning in DH

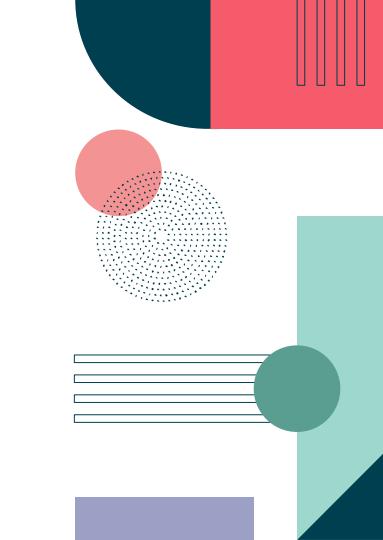
- Makerspace as "liminal space"
- Collaboration/networking
- Student empowerment
- Technology and broader possibilities for work

Inquiry-based Learning

- Creative problem solving
- Ideation
- Tinkering


Nagle, S., & Cox, A. (2020). Moving Beyond Craft Programs: Encouraging Creative Confidence in Adult Learners. In J. Hicks & J. Long (Eds.), Makerspaces for Adults: Best Practices and Great Projects. Lanham, MD: Rowman & Littlefield.




Ideation Activity

30 Circles

Kits for Cultural History

Screen Essentialism

Tacit Knowledge Media Archaeology

🛢 Primary Insight -

Physical computing and desktop fabrication can facilitate experimental approaches to history and material culture, with an emphasis on knowing by doing.

Their Words

"the impulse . . . is to go beyond purely documentary states of objects" - Kari Kraus, *Digital Humanities Quarterly*

"intimacy with industrial procedure and fabrication" - Matthew Kirschenbaum, *Mechanisms*

"culture needs to be taken seriously in the practice of technologial innovation" - Anne Balsamo, *Designing Culture*

"different versions and styles of media history do make a difference" - Lisa Gitelman, *Always Already New*

Trajectories

Prototype at least two functioning kits (Year 1) Build partnerships with GLAM institutions (Years 2-4) Circulate kits for testing by practitioners (Years 2-4) Articulate scholarly recommendations for humanities physical computing and desktop fabrication (Years 3-4)

Researchers

Jentery Sayers (University of Victoria) Maker Lab in the Humanities William J. Turkel (Western University) Lab for Humanistic Fabrication

Research Goal

Build historical research and foster technology-based learning through tacit engagements with media and mechanisms of the past.

Conseil de recherches en Social Sciences and Humanities Canada Sesarch Council of Canada Can

Canada

Humanities Fall on the Z-Axis

Research

Exploring forms of visualization that express subjective encounters with data through 3D modeling, prototyping, and desktop fabrication.

Initial Prototype

A map that geolocates reading-time in Ulysses. An archival map is used to generate a displacement map, which is then applied to a 3D plane and warped along its z-axis. The z-axis expresses time spent reading.

RVEY INL

Z-Axis Methods

 Displacement Warping

Cultural Analytics

Lines of Inquiry

- Digital/Material Convergence
- The Material Histories of Interfaces
- Transforming Algorithmic Criticism
- Built Media as Scholarship

Deepening Data Visualization • Researchers

How does that which resists quantification inform our encounters with data? On the z-axis, how should we express ambiguity? Change? Personal engagement? Difference?

Alex Christie, Jentery Sayers, Katie Tanigawa, and the Maker Lab in the Humanities

Canada

History, Culture, & Technology of Stage Magic

Figure 1: Model of levitation effect.

Photo by William J. Turkel.

Figure 2: Shadows in this photograph indicate the method used to perform a model levitation.

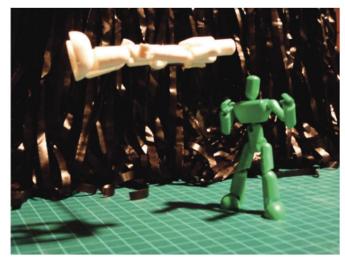
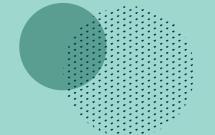



Photo by Devon Elliott.

Elliott, D., MacDougall, R., & Turkel, W. J. (2012). New Old Things: Fabrication, Physical Computing, and Experiment in Historical Practice. *Canadian Journal of Communication*, 37(1), Article 1. https://doi.org/10.22230/cic.2012v37n1a2506

Brainstorm

Think of a traditional humanities (writing, research, etc.) or assignment you have done in any of your classes.

 \rightarrow Think about how...

- You could have added a maker element of any type to that project.
- Tinkering, creative problem-solving, and/or ideation could have changed your approach to the project.

 \rightarrow How would adding these elements have impacted the final product of the assignment?

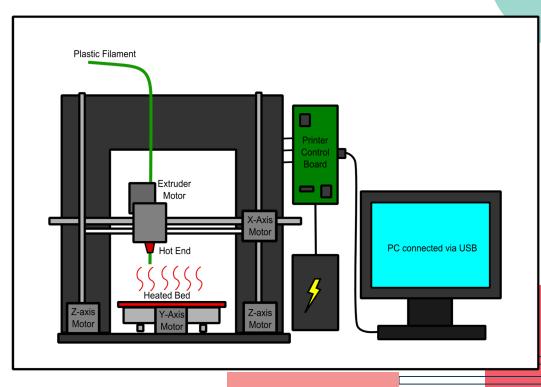
3D Printing

. * * * * * * * * * * * * . <mark>.</mark>


3D Printing: What is it?

Simple definition:

The creation of a physical object based on a 3D computer model, layer by layer, in an additive process.


3D Printing: Uses and Benefits

- 1. Rapid prototyping
- 2. Easy customization
- 3. Complex/intricate items
- 4. Accessibility

Types of 3D Printing: Fused Deposition Modeling

Uses a string of filament and a hot end.

Types of 3D Printing: Stereolithography

Uses vat of resin and a laser!

Finding Pre-made 3D Models

General Repositories

- Thingiverse
- Pinshape
- Sketchfab

Medical/Scientific

- Embodi3D
- NIH 3D Print Exchange

Cultural Heritage/History

- Sketchfab CCO Virtual Collection
- Smithsonian 3D

3D Modeling Activity!

----.